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Lemma 0.1 (for Exercise 1a). Let Tr(n) be the Turán graph and tr(n) the number of edges
of Tr(n). Then

tr(n+ 1) = tr(n) + n−
⌊n
r

⌋
Proof. We form tr(n+ 1) from tr(n) by adding a vertex v to a group with bn

r
c vertices, then

add all edges from v to vertices from other groups. There are n possible neighbors of v, but
we must subtract the vertices from the same group. Thus we add n−

⌊
n
r

⌋
edges.

Note: The right inequality in the following proposition was not part of Exercise 1a, but
I needed it for 1b, and it was more economical to prove both inequalities in the same
proposition.

Proposition 0.2 (Exercise 1a). Let Tr(n) be the Turán graph and tr(n) the number of edges
of Tr(n). Then (

1− 1

r

)(
n

2

)
≤ tr(n) ≤

(
1− 1

r

)(
n

2

)
+ n

Proof. We prove both inequalities by induction on n. The base case n = 1 holds because(
1
2

)
= 0 and tr(1) = 0. Assume the left inequality holds for n = 1, . . . , k.

tr(k + 1) = tr(k) + k −
⌊
k

r

⌋
≥
(

1− 1

r

)(
k

2

)
+

(
1− 1

r

)
k

=

(
1− 1

r

)((
k

2

)
+ k

)
=

(
1− 1

r

)(
k + 1

2

)
This completes the proof of the first inequality. For the second inequality, note that

k −
⌊
k

r

⌋
≤ k − k

r
+ 1
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Then

tr(k + 1) = tr(k) + k −
⌊
k

r

⌋
≤
(

1− 1

r

)(
k

2

)
+ k + k − k

r
+ 1

=

(
1− 1

r

)(
k

2

)
+

(
1− 1

r

)
k + (k + 1) =

(
1− 1

r

)((
k

2

)
+ k

)
+ (k + 1)

=

(
1− 1

r

)(
k + 1

2

)
+ (k + 1)

This completes the induction for the second inequality.

Proposition 0.3 (Exercise 1b). Let tr(n) be as above. Then for a fixed r ≥ 1,

tr(n) =
1

2

(
1− 1

r

)
n2 + o(n2) as n→∞

Proof. Using the first inequality from 1a,

tr(n)− 1

2

(
1− 1

r

)
n2 ≤

(
1− 1

r

)(
n

2

)
+ n− 1

2

(
1− 1

r

)
n2 =

1

2

(
1− 1

r

)
n

Using the second inequality from 1a,

1

2

(
1− 1

r

)
n2 − tr(n) ≤ 1

2

(
1− 1

r

)
n2 −

(
1− 1

r

)(
n

2

)
=

1

2

(
1− 1

r

)
n

Thus ∣∣∣∣tr(n)− 1

2

(
1− 1

r

)
n2

∣∣∣∣ ≤ 1

2

(
1− 1

r

)
n

Thus for a fixed r, the error term is bounded above by a constant multiple of n. Thus
for any ε > 0, for sufficiently large n the error is bounded by εn2. (Choose n > c

ε
where

c = 1
2

(
1− 1

r

)
.)

Proposition 0.4 (Exercise 2). The upper density of an infinite graph G lies in the set{
0, 1

2
, 2
3
, 3
4
, . . . , 1

}
=
{

1− 1
r

: r ∈ Z≥1
}
∪ {1}.

Proof. Let D(G) be the upper density of G and suppose D(G) > 1− 1
1−r for some r ≥ 2. Note

that D(G)−
(
1− 1

1−r

)
> 0. Because D(G) is the supremum over all densities of aribtrarily

large finite subgraphs, for every δ > 0 and n0 > 0 there exists a finite subgraph Hδ,n ⊂ G
with at least n > n0 vertices and

D(Hδ,n) > D(G)− δ

Choose δ so that 0 < δ < D(G)−
(
1− 1

r−1

)
. Then choose ε with 0 < ε < D(G)−δ−

(
1− 1

r−1

)
.

Then

D(Hδ,n) > D(G)− δ >
(

1− 1

r − 1

)
+ ε
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We can write this inequality as

e(Hδ,n) >

(
1− 1

r − 1
+ ε

)(
n

2

)
=

(
1− 1

r − 1
+ ε′

)(
1

2
n2 − 1

2
n

)
>

(
1− 1

r − 1
+ ε

)
1

2
n2

choosing ε′ so that 1
2
n2ε′ < 1

2
εn2 − 1

2
εn. Then by the Erdos-Stone Theorem, there exists n0

so that n > n0 implies Kr(tn) ⊂ Hδ,n where tn → ∞ as n → ∞. By the inequalities from
Exercise 1a, the density of Kr(tn) = Tr(rtn) tends toward 1− 1

r
as tn →∞, so D(G) ≥ 1− 1

r
.

We have proven the implication

D(G) > 1− 1

1− r
=⇒ D(G) ≥ 1− 1

r

Thus it is impossible for D(G) to lie in the interval
(
1− 1

1−r , 1−
1
r

)
for any r ≥ 2. Thus

D(G) ∈
{

1− 1
r

: r ∈ Z≥1
}
∪ {1}.

Theorem 0.5 (Exercise 3, Erdos-Simonovits Theorem). Let F be a graph with chromatic
number r = χ(F ). Then

ex(F, n) =
1

2

(
1− 1

r − 1

)
n2 + o(n2)

Proof. Since χ(Tr−1(n)) = r − 1, Tr−1(n) does not contain F as a subgraph. Thus

ex(F, n) ≥ e(Tr−1n(n)) = tr−1(n) ≥
(

1− 1

r

)(
n

2

)
≥
(

1− 1

r − 1

)(
n

2

)
=

(
1− 1

r − 1

)(
1

2
n2 − 1

2
n

)
≥ 1

2

(
1− 1

r − 1

)
n2

This is a sufficient lower bound for ex(F, n). Now we obtain an upper bound. We can restate
the definition of ex(F, n) as

ex(F, n) ≤ x ⇐⇒

(
e(G) ≥ x =⇒ F ⊂ G

)
(1)

Let ε > 0. Then by Erdos-Stone, there exists n0 such that for n0 ≥ n,

e(G) ≥ 1

2

(
1− 1

r − 1
+ ε

)
n2 =⇒ Kr(t) ⊂ G

for some t ≥ ε log n/(2r+1(r − 1)!). Since χ(F ) = r, we know that χ(F ) ⊂ Kr(t) for
sufficiently large t, so Kr(t) ⊂ G =⇒ F ⊂ G. Then by our equivalence (1), for n ≥ n0, we
have

ex(F, n) ≤ 1

2

(
1− 1

r − 1
+ ε

)
n2 =

1

2

(
1− 1

r − 1

)
n2 +

1

2
εn2

Together, our two bounds say exactly that for n ≥ n0, we have

ex(F, n) =
1

2

(
1− 1

r − 1

)
n2 + o(n2)
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(Exercise 4) A presentation of the quaternion group Q of order 8 is given by

〈e, i, j, k|e2 = 1, i2 = j2 = k2 = ijk = e〉

It is clear from the relations that we do not need e or k as a generator. From the relations,
we can deduce that e commutes with everything and that

ij = k ji = k ki = j ik = ej jk = i kj = ei

To show that this group has order 8, we draw the Cayley graph of this presentation. Because
e is in the center, it is relatively clear how multiplication by e acts, so we omit the e arrows.
We could also omit the k arrows, but we include them to better appreciate the symmetry.

Blue arrows are multiplication (on the right) by i, red arrows are multiplication (on the
right) by j, and green arrows are multiplication (on the right) by k.

e i

j k

ek ej

ei e

Proposition 0.6 (Exercise 5a). Let A be a group with generators {gi}i∈I and let B ⊂ A be a
subgroup. Then B is a normal subgroup of A if and only if for every vertex Ba in G(A,B),
there is a unique edge-label preserving graph automorphism φ : G(A,B) → G(A,B) such
that φ(B) = Ba.

Proof. Suppose B is normal in A, and let Ba be a vertex in G(A,B). We have a map on
vertices φa : G(A,B) → G(A,B) which is φa(Bc) = aBc = Bac. (These are equal because
B is normal.) Clearly φa(B) = Ba. Also, φa corresponds to left multiplication by a on A/B,
so it is a bijection on vertices. It preserves the edge labelling, because because there is an
edge gi : Bc→ Bc′ if and only if Bc′ = Bcgi if and only if there is an edge
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φa(Bc) = aBc (aBc)gi = φa(Bcgi)
gi

Thus φa is the required automorphism. Finally, we show uniqueness. Let φ, φ′ both be
edge-label preserving automorphisms of G(A,B) with φ(B) = φ′(B) = Ba. We need to
show that for arbitrary c ∈ A, we have φ(Bc) = φ′(Bc). Write c as a product of generators
c = g1 . . . gn. Then we have the following picture in G(A,B).

B Bg1 . . . Bg1 . . . gn = Bc
g1 g2 gn

Since φ, φ′ are graph automorphisms, we also have

φ(B) = Ba φ(Bg1) . . . φ(Bc)

φ′(B) = Ba φ′(Bg1) . . . φ′(Bc)

g1 g2 gn

g1 g2 gn

Since φ, φ′ are edge-label preserving, φ(Bg1) = φ′(Bg1) = Bag1. Then continuing down the
path with this reasoning, φ(Bc) = φ′(Bc).

Now we suppose that B ⊂ A is a subgroup so that G(A,B) has this automorphism
property. For each vertex Ba of G(A,B), let φa be the corresponding automorphism. By
the same sort of path-following uniqueness argument as above, φa(Bc) = Bac for any Bc.
We also compute

φa1φa2(Bc) = φa1(Ba2c) = Ba1a2c = φa1a2(Bc) =⇒ φa1φa2 = φa1a2

ViewingA/B as a right coset space, we have an injective map of sets Φ : A/B → Aut(G(A,B)),
Ba 7→ φa. Φ is injective because if Ba 6= Ba′, then φa, φa′ take different values on B. We
know that B ⊂ A is normal if and only if the multiplication (Ba1)(Ba2) = B(a1a2) is well
defined, and by the previous equality,

Φ(Ba1a2) = φa1a2 = φa1φa2 = Φ(Ba1)Φ(Ba2)

Since Φ is injective, this says that (Ba1)(Ba2) = B(a1a2) is well defined, so B is a normal
subgroup.

Proposition 0.7 (Exercise 5b). Let A be a group with generators {ai}i∈I and B ⊂ A a
subgroup. There can be no graph-theoretic criterion to be a necessary and sufficient condition
for B to be a central subgroup.

Proof. If A is any group with generators ranging over some indexing set I, then G(A,A) is
a single vertex with I loops. In particular, the Schreier graph G(A,A) is the same (up to
isomorphism) regardless of whether A is abelian or not.

If there was a criterion for central subgroups in terms of G(A,B), then it would include
the special case of B = A, where the question of being central is equivalent to A being
abelian. Since G(A,A) does not detect whether A is abelian, no such criterion exists.
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